Robust Fisher Discriminant Analysis

نویسندگان

  • Seung-Jean Kim
  • Alessandro Magnani
  • Stephen P. Boyd
چکیده

Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the problem data, robust Fisher LDA can be carried out using convex optimization. For a certain type of product form uncertainty model, robust Fisher LDA can be carried out at a cost comparable to standard Fisher LDA. The method is demonstrated with some numerical examples. Finally, we show how to extend these results to robust kernel Fisher discriminant analysis, i.e., robust Fisher LDA in a high dimensional feature space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Kernel Fisher Discriminant Analysis

Kernel methods have become standard tools for solving classification and regression problems in statistics. An example of a kernel based classification method is Kernel Fisher discriminant analysis (KFDA), a kernel based extension of linear discriminant analysis (LDA), which was proposed by Mika et al. (1999). As in the case of LDA, the classification performance of KFDA deteriorates in the pre...

متن کامل

Matching Pursuit Kernel Fisher Discriminant Analysis

We derive a novel sparse version of Kernel Fisher Discriminant Analysis (KFDA) using an approach based on Matching Pursuit (MP). We call this algorithm Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA). We provide generalisation error bounds analogous to those constructed for the Robust Minimax algorithm together with a sample compression bounding technique. We present experimental ...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Discriminant analysis for compositional data and robust parameter estimation

Abstract Compositional data, i.e. data including only relative information, need to be transformed prior to applying the standard discriminant analysis methods that are designed for the Euclidean space. Here it is investigated for linear, quadratic, and Fisher discriminant analysis, which of the transformations lead to invariance of the resulting discriminant rules. Moreover, it is shown that f...

متن کامل

Multiple Group Linear Discriminant Analysis: Robustness and Error Rate

Abstract: Discriminant analysis for multiple groups is often done using Fisher’s rule, and can be used to classify observations into different populations. In this paper, we measure the performance of classical and robust Fisher discriminant analysis using the Error Rate as a performance criterion. We were able to derive an expression for the optimal error rate in the situation of three groups....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005